Synthesizing the preferred inputs for neurons in neural networks via deep generator networks
Anh Nguyen, Alexey Dosovitskiy, Jason Yosinski, Thomas Brox, Jeff Clune
Links: pdf | code | project page
Deep neural networks (DNNs) have demonstrated state-of-the-art results on many pattern recognition tasks, especially vision classification problems. Understanding the inner workings of such computational brains is both fascinating basic science that is interesting in its own right – similar to why we study the human brain – and will enable researchers to further improve DNNs. One path to understanding how a neural network functions internally is to study what each of its neurons has learned to detect. One such method is called activation maximization (Erhan et al. 2009), which synthesizes an input (e.g. an image) that highly activates a neuron. Here we dramatically improve the qualitative state of the art of activation maximization by harnessing a powerful, learned prior: a deep generator network (DGN). The algorithm (1) generates qualitatively state-of-the-art synthetic images that look almost real, (2) reveals the features learned by each neuron in an interpretable way, (3) generalizes well to new datasets and somewhat well to different network architectures without requiring the prior to be relearned, and (4) can be considered as a high-quality generative method (in this case, by generating novel, creative, interesting, recognizable images).
Conference: NeurIPS 2016 (23% acceptance rate)
Press coverage:
- The Verge. Artificial intelligence is going to make it easier than ever to fake images and video
- Fast Company. This Neural Network Makes Faces From Scratch (And They’re Terrifying)
- Popular Science. See The Difference One Year Makes In Artificial Intelligence Research
- IFL Science. The “Dreams” Of Artificial Intelligence Are Getting Even More Lifelike
Some people used this method to:
- Synthesize Image Synthesis from Yahoo’s open_nsfw
- Generate music videos
- Visualize features of a net trained on MIT Places 365